
AD AO72 1e57 CARN EGI E—ME LLON LRIIV PITTSBIWGH PA MANAGEMENT SCIENC—ETC F/S 12/1
A RESTRICtED LAGRANOEAN APPROACH To THE TRAVELING SALESMAN PROB—ETCCU)
I$A. 79 £ BALAS, N CHRISTOF IOC S NOOO1~~ 7S C—O62 1

UNCLASSIFIF~ MSRR—439 NI.

ii
LI



1~0 ~
_______ l~ 

2 2

~~~~~3.5

~I z.o1•1 ~~~~
____ 

L.

* 

11UF
~ iiii~ir~

—
~ 

L~~
.•



— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________________

1
) ~VLEVEL~~

Carnegie-Mellon University
PITTS$UIGH, PENNSYLVANIA 15213

~~uJ
GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

• WILLIAM LARIMER MELLON. FOUNDER •

B

~~~~~I~~LL
J_ -1I

~~~~~~~~~ 
_ _ _ _ _

1. DistxIbuliofl

_ _  

79 08 08 065
L _ _  _ _  _ _ _  _ _ _ _  

_ _ _ _ _ _ _ _ ______________ -•- ~~~.. -‘.- -- --- 
______— 

- - —. —&- —
--



®LEVEL~ /
W. P. No. 7-79-80

Management Sciences Research Report No. 439 
/

A RESTRICTE D LAGRANGEAN APPROACH

TO THE TRAVELING SALESMA N PROBLEM

by

*Egon Balas and Nicos Christofides

July 1979

D D C
P1~ 1Ff1fl Tlf?

I X~ $j 6 9 1~9
Uth~uo~ uuL 5

B

This report was prepared is part of the activities of the
Management Science Research Group, Carnegie-Mellon University,
under Grand ?~ S7~-12O26 A02 of the National Science ~oundationand Contract N0014-75-C-0621 NR 047-048 with the U.S. Office
of Naval Research . Reproduction in whole or in part is
permitted for any purpose of the U.S. Government.

— -
~~~~ Management Science Research Group

Graduate School of Industrial Administration
Carnegie-Mellon University

Pittsburgh , PA 15213

* imperial College of Science and Technology, London, England

DISTRIBUTION STATEMENT A
Approved for public releaa.

Distribution Unlimited

_ _   

79 08 08 065
—

~~~~~~~~~~~ 

—
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 

-

~ 

- 

-- —- -



Abstract

We describe an algori thm for the asynmietric traveling salesman

problem (TSP) using a new, restricted Lagrangean relaxation based on the

assignment problem (AP). The Lagrange multipliers are constrained so as

to guarantee the continued optimality of the initial AP solution, thus

eliminating the need for repeatedly solving AP in the process of computing

multipliers . We give several polynomially bounded procedures for

generating valid inequalities and taking them into the Lagrangean function

with a positive multiplier without violating the constraints , so as to

• strengthen the current lower bound. Upper bounds are generated by a fast

heuristic whenever possible . When the bound-strengthening techniques are

exhausted without matching the upper with the lower bound, we branch by

using two different rules, according to the situation: the usual subtour

breaking disjunction , and a new dis junct ion  based on conditiona l bounds.

We discuss computationa l experience on 120 randomly generated asynmetric

TSP’ s with up to 325 cities , the maximum time used for any single problem

being 82 seconds. Though the algorithm discussed here is for the asysmietric

TSP , the approach can be extended to the sysmietric TSP by using the

2-matching problem instead of A?.
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1. Outline of the Approach

The traveling salesman problem (TSP), i.e., the problem of finding a

minimum-cost tour (Or hamiltonian circuit) in a directed graph G = (N,A),

can be formulated as the problem of minimizing

(I) E Z
i~N JaN 

1•~

subject to

/ E x~ — 1 , i e N
~ 

jaN
(2) .1

~ E X~~ = 1, j € N
L iaN

(3) X
ii 

fo ,l), i,j sN

(4) x is a tour.

For (i,j) €A , is the cost associated with the arc (i,j); for

(i,J)IA , c~1

Conditions (3), (4) can be rep laced by

(5) X~~1 2 0 , i ,)  a N

(6) Z a~~x~ 4 > a ~ ,
iaN JaN ~

where (6) is a set of inequalities which, together with (2) and (5),

def ine the convex hull of all tours in C.

If S and T are node sets , we denote (S ,T) — ((i,j) ~A u S , jeT).

For any problem P, we denote by v(P) the value of (an optimal solution to) P.

We describ , an arc premium/penalty-based branch and bound method for

solving TSP , which uses

(a) a new Lagrangean relaxation of TSP and a restricted Lagrangean

problem derived from it , which has constraints on the multipliers ;
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(b) several procedures for generating inequalities which can be taken

into the Lagrangean function with a positive multiplier (premium or penalty),

Uithout violating the constraints or changing the multipliers generated earlier ;

(c) a new branching rule based on disjunctions derived from conditional

bounds.

We first outline the method , then discuss its various components in

detail.

The assignment problem (1), (2), (5) associated with TSP will be

denoted by AP. It is well known that any integer solution to AP is either

a tour (hamiltonian circuit), or a collection of subtours (a union of dis-

— joint circuits). The Lagrangean problem mentioned under (a) is an assign-.

ment problem obtained from AP by applying premia or penalties to certain

arcs , in a way which is equivalent to taking into the objective function,

in a Lagrangean fashion, some of the constraints (6).

From the set of inequalities (6) we extract a subset

t t(7) E E a~ 4x~ 4 ~ 
a0, t a T C Q

icN jsN ~

and call 12 the linear program (1), (2), (5), (7). Though the set Q is at least

exponential in JN~ , empirical evidence as well as theoretical considerations

indicate that there are relatively small subsets T of Q such that the value

of the corresponding 12 comes very close to (or coincides with) that of TSP.

Using Lagrangean relaxation on (7) and denoting by w the vector of

Lagrange multipliers,we obtain the problem L(w,x), equiva lent to LP,of

finding w 2 0 to maximize z(w), where

(1’) z(w) — m m  Z Z (c~ 4 - E w
~
a
~ 4 )x

~4 + E
u N  JaN ‘ taT ~ teT

subject to

( E x~~~— l , L a N) JaN
(2) z xLj~~~

I
~ ja N

¼qi ttt~
(5) X

j j  
2 0 , i ,J e N .
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The Lagrangean relaxation L(w ,x) of TSP can be used to generate lower

bounds on v(TSP) . While L(w ,x) may yield very strong bounds indeed ,

depending on the choice of the inequalities (6) ,  its solution via , say ,

subgradient optimization, requires a considerable computational effort,

including the solution of the assignment problems associated with every

vector w generated during the procedure . Instead , we consider a restriction

RL(w ?x) of the Lagrangean relaxation L(w,x). Let x be an optimal solution to

AP, i.e., to the assignment problem with cost function (1). RL(w,x) is then

the problem of finding w > 0 to maximize z(w) def ined by (1’), (2) and (5),

subject to

= c j j  if ~~~~~ > O

L (8) u~ + V
j 

+ 
t iT

< c 1 if ~~~ — 0

for some U ,V C R
n

.

Problem RL(w ,x) has two properties which make it useful towards

solving TSP.

First, any Li, ~~
- and ~, satisfying (8) and ~ > 0 is a feasible solution

to the linear program dual to 12; therefore the objective function value

of this dua l linear program is a lower bound on v(LP ),  hence on v ( T S P ) ,

i.e., we have

Proposition 1. If Li, ~ and ~‘ 2 0 satisfy (8), then

(9) t + t + E ~~~~irN JaN taT

Second , while ~ remains an optimal solution to the ass igimient problem

with the modified objective function (1’), the changes brought about by

the penalties/premia 
~~~~

, t a T , are l ikely to create new , alternative optima .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - -~
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Whenever such an alternative optimal, solution ~ to the assignment prob lem

(1’),  (2) ,  (5) turns out to be a tour , it has the following property .

Proposition 2. Lf ~ satisfies with equality the inequality (7) indexed

by t for all t a T  such that > 0 , ~ is an optimal tour .

Proof. ~c and ~~~~~~~ are feasible solutions to 12 and its dua l ,

respective ly . From the definition of ~~ , we have

~ +~~~ + ~ ~~~~ • c ~~ ~ teT~~~~~~ 
j

whenever > 0. This , together with the condition of the Proposition,

means that ~c and (Li ,~’,~ ) satisfy the complementary slackness conditions.
Thus ~ is an optimal solution to 12, hence an optima l tour . t I

We st art  by solving the assignment problem AP in the free

variables . Nex t we use severa l different procedures for generating an

increasing sequence of lower bounds on v(TSP) , by successively identif ying

inequali ties (7) that

(i) are not satisfied by the current solution x to AP , and

(ii) admit a positive multiplier w~ which , together with the

multipliers already assigned , satisfies (8);

and by setting the multipliers w~ each time to the greatest positive

valu, compatible with (ii). At any given stage, the admissible graph

G0 — (N ,A0) is the spanning subgrap h of C containing those and only

those arcs with zero reduced cost, i.e.,

A 0 — [(i,j) sA I u~ + V~ + : w
~
a
~ j = c

~~).t aT
When no more inequalities (7) satisfying conditions (i) and (ii)

can be found , we store the bound given by (9) and try to find a tour in

— — ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~ — - -
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the admissible graph. If a tour is found which satisfies with equality

‘ I all inequalities associated with positive multipliers, it is optimal for

the given subprob lem . If a tour is found which v iolates this condition

4 for some inequalities , attempts are made at finding new inequalities

which satisfy the condition and admit positive multipliers. If sutcessful,

• these attempts strengthen the lower bound , and they may also eliminate the

inequalities that are slack. In any case, the value of the tour (in the

• - original costs c,~~) provides an upper bound on v(T SP) , while (9) provides

a lower bound for the current subproblem; and we branch. Finally, if no tour is

found in G0, we add arcs to C0 
in the order of increasing reduced costs until

a tour is found in the resulting graph. The cost of this tour again provides

an upper bound on v(TSP), while (9~ still provides a lower bound for the

current subproblem; and we branch .

The assignment ~roblems are solved by the Hungarian method, 
the

same method is used to recalculate the reduced costs whenever some u~ and

vj 
have to be changed . The constraints (7) are “subtour-breaking”

inequalities and combinations of the latter with some of the equations

(2 ) ,  but they are used here in a novel way. The bounding procedures are all

polynomial-time algorithms, considerably more efficient (in terms of improvement

obtained versus comrutationa l effort) than earlier approaches (like [3]), as

evidenced by the computational results of section 5. Searching the admissible

graph G0 for a tour is accomplished by a specialized implicit enumeration

procedure, with a cut-off rule. Finally, for branching we use two different

rules, one which derives a disjunction from a conditional bound (1], and one

which breaks up a subtour.

A preliminary version of our approach , with fewer and less sophisticated

bounding procedures, was discussed in (2].

____ -t - _ ‘~~i .-• - ~~~~L -~-- — — -- - ‘ - - - - — - ~~~~~~~~~~ •~~~~~~~~~ --
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2. Bounding Procedures

At any stage of the procedure , the reduced costs

— tc = c  - u . - v  - E w a .
~~ ~~ ~ ~ taT’ ~~~~

will, be defined relative to the subset T’ CT of inequalities already

introduced into the function (11’ ).

We use three types of inequalities (7), and we will denote by T1, T2

and T3 the corresponding subsets of T.

For t a T , let 0 
~ 

S
~~~

N and = N\S
~~

. An arc set of the form

Kt = (St ,S
~

)

is called a (directed) cutset.

Clearly ,the inequalities

(7a) E x. 2 1, t
(i ,j ) s K

~ 
~‘

are satisfied by every tour, and so are the inequalities

(7b’) Z ~ Xjj  ~~~ 
I S t I - 1, t a T 2j est its~

or, to preserve the direction of the inequality ,

H (7b) - E Xj j  2 1  - ~~~ t a T 2 .ics t j est
For a given set S~~, the “subtour-breaking” inequalities (7a) and (Th)

are equivalent : (7b ) can be obtained from (la) by subtracting the sum of

the equations

~~ X1j 
= l~ i eS

~
,

ja N

and (7a) can be obtained from (7b) by the reverse operation. Nevertheless,

the presence of inequalities associated with the same set S~ in both

subsets (7a) and (7b ) need not be avoided , since it may enrich the set of dual

vectors (u ,v ,w) satisfying (8) and w 2 0.

- —~~ ~~~~~~~~~~~ 
- 

~~~ ~~~
-
~~~~~~~~~~~~~
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Finally , for any keN , St C N \ f k )  and N\S
~
, the arc sets

= (s~
,
~~ \ C k 3 )  and = (

~~~\ ( k 3 , S~
)

are (directed) cutsets in the subgraph <N\ fk 3) of G induced by N\fk 1.

Proposition 3. The inequalities

(7c) E x > 1 , t a T
(i~ J)c4UK~ 

1~ — 3

are satisfied by every tour.

Proof. Every ~~€ [o , 13n that violates (7c) corresponds to a subgraph G ’

H of C which is either disconnec ted , or contains an articu lation point k

hence C’ cannot be a tour.~I

- - Actually , more can be said about the family (7c):

Proposition 4. In the presence of the constraint set (2), for every

kcN and stcN\[k), the inequality (7c) is implied by the two subtour-breaking

inequalities associated wi th the node sets S~ U Ck) a nd S~ respectively,  i . e . ,  b y

( 7b) 1 
- X~ >
iaS t U fk l  j aS

~ U Ck3 ~
and

(7b) 2 - E Z ‘C 
~~~ 

I -

tac jeS‘_ t t

Proof. The inequality (7c) is the sum of (Th)1, (7b )2 and the

equations

~ 
x~~~ — l , j e s t.1 eN

E Xi 
j e s t .tI

I
I 

iaN

The components of w associated with the inequalities (7a), (7b), and

(7c) w i l l  be denoted by X , ~& and v respectively.

I 

$

~~~~~~~~~,
. 

~~  
________  J
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2 .1. Bounding Procedure 1 starts by searching for an inequality (7a) which

satisfies conditions (i), (
~~ ) of section 1, i.e., is violated by x and

can be assigned a positive multiplier without making any of the reduced

costs negative. Clearly, these conditions are satisfied for the inequality

(7a) defined by a cutset K
~
, if and only if

- - (10) Kt f l A 0 = 0 ,

where A0 is the arc set of the admissible graph G0.

To find K
t 
satisfying (10), we choose any node i eN and form its

reachable set R(i) in C0. If R(i) = N , there is no cutset (S,S) with i aS ,

satisfying (10), so we choose another i€N. If for some i eN , R(i) # N, then

K
t = (Sk ,~k) 

satisfies (10) for S = R(i). Furthermore,

(11) — mm c ,
(i,j)cK

~ 
ij

is clearly the largest value that can be assigned to the corresponding

multiplier without making some reduced costs negative. We thus assign

the above value and set

~i j  
— — X

~
, (i , j )  C K t ,

i.e., we apply a premium of to each arc of the cutset K
~
. As a result

of this , the arcs for which the minimum in (11) is attained , become

admissible, and we add them to A0, thus enlarging the admissible graph G0.

Next, we extend the reachable set R(i) of node i by using the new

arcs of G0 and either find R(i) = N , or locate another cutset Kt satisfying

(10). If R(i) a N, again we choose another node.

This procedure ends when R(i) N , V i eN. At that stage is

strongly connected , and

Kf l A0~~ O

for all cutsets K (S,S), ScN.

~~~~~~~~~ - ~~~~~
_ _ L _ _ ~~~~

_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Proposition 5. Bounding Procedure 1 stops after generating at most

- l)(h+2) cutsets, where h is t1’ number of subtours in ~.

Proof Starting with node i1 belonging to subtour S1, every cutset adds to

4 an arc which includes into R(i1) a new subtour. After generating at most h-i cut-

sets, R(i1)N . 
Now starting with node i2 

belonging to subtour S
2~
S
1 
and proceeding

to find R(i2), again at most h-i cutsets can be generated
. However, since we now

have i2
€ R(i1

) and i1€ RU2), 
the number of strong components of the current

graph C0 is at most h-i. Thus, continuing to find RU3) for some node 13

belonging to a subtour S3, S1~
S
3~
S2, at mos t h-2 cutsets can be generated ,

and since the vertices of S1, S2 and S3 
now form a strong component , the

number of strong components in the current graph G
0 

is at most h-2.  Continuing

in the same way, the number of cutsets generated by the procedure (until G0

becomes s t rongly connected) is at most

(h-i) + (h- i )  + (h ~2) + (h-3) + . . .+ 1 ~ (h-l) (h+2).

Since the optima l dua l variables U .. , v . associated with ~ are not -

changed by this procedure , and since

~~ 
+ V .  = cx = v (A P ) ,

iaN jaN ~

if T
1 is the index set of the inequalities generated by Bounding Procedure 1, the

lowe r bound obtained for  the current sub p roblem is , from Proposition I,

(12 ) B1 = v (AP ) + E X~ .t~ T1F 2 .2 .  Bounding Procedure 2 s tarts  by searching for an inequality (7b) which

is violated by x and admits a positive penalty without changing any of the

t a T 1. If s1, . . .  ,Sh are the node sets of the h subtours of ~~~, every

inequality (7b) defined by S~ , t — l ,...,h , is violated by 
~~~ ; but a positive

penalty 
~~ 

can be applied without violating the condition that > 0

implies 
~~~~~~ 

a 0, only by changing the values of some u~, and and only if

- 
— 

~~~~~~~~.~~~~~~~~
_
~~~~~~~

—- - I
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-
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an additional condition is satisfied . This condition can best be expressed

in terms of the assignment tableau used in conjunction with the Hungarian

method . A line of the tableau is a row or a column , a cell of the tableau

is the intersection of a row and a column . Cells correspond to arcs and

are denoted the same way.

Let St be the node set of a subtour of x , let

= [(i,j) eA 0 i ,j es~3
and

= f ( i , j )  e A t I :~~ > 0).

Proposition 6. A positive penalty can be applied to the arcs wi th

both ends in S t if and on ly if there exists a set C of iines such that

(i) every (i,j) eA is covered by exactly one line in C ,

(ii) every (i,j) cA
~

\A
~ 

is covered by at most one line in C,

(iii) no (i,j) CA 0\A t is covered by any line in C.

If such a set C exists , and it consists of row set I and column set J , -

then the maximum applicab le penalty is

(13) a mm

(i,j)eM
where

(14 ) M = (I ,J) U (I ,S
~

) U (S
~
,J).

Proof. Sufficiency . Suppose there exists a line set C , consisting

of row sets I and column sets J, satisfying conditions (1), (ii), (iii).

Then adding an amount ~ > 0 to for all (i,j) € (S
~
,S
~
), as well

as to all u1, i € 1 , and all ~~~~, j eJ , produces a set of reduced

costs such that — 0 for all (i,j) cAt , since C — IUJ satisfies (i).

Fur ther , from property ( i i )  of the set C, ~ 0 , V ( i . j)  eA
~~\A~~

; and from

___ __ _ _ __•_;

~ 

_ ______ ____ _ _ __ _ _ __________ _-t__ —- --•—--— - 
_~~~ _. -~ — - .~-•-— - —• — — — — -•——--~~~ •-- — — -- - - - —•-~-—.-- — -—-—~~~~~~
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( i ii) ,  cj ~ = c , ,  = 0, V (i,j) a A
0~

A
~
. Thus the only reduced costs

that get diminished as a result of the above modi f ica t ion , are those

associated with  arcs (i ,j) aA for which either (~ ) nothing is added to

and .~. is added to ~~ or to or (~
) ~ is add ed to c~~ and

to both and V
j

. The two sets of arcs for which (~) holds

are 
~~~~~~~~~~ 

and (S
~

,J ) ;  whe reas the arc set for which (
~ ) holds is (I,J).

The union of these three arc sets is M defined by ( 14) . Thus a positive

- 

• 
penalty at most equal to defined by (13) can be applied to the arc set

(S
~
,S
~
) in the above described manner without producing any negative reduced

costs.

Necessity . Suppose a penalty ~ > 0 can be applied to the arc set

(S
~
,S
~
). Since adding ~ > 0 to V (i,j) € (St,St), produces positive

reduced costs for all (i,j) cA
~~ 

in order to obtain reduced costs — 0

for all (i,j) eA~ , one must increase by ~j . 
the sum + V

j 

for  all, (i ,j ) eA ~ .

It is easy to see that if this can be done , then it can be done by adding ~ to

or (but not to both), for every (i ,j)€A~ ; hence there exists a set C of

line s satis fying condition (i) . Further , if (i , j )  € A
~
\.A
~
, then ~ cannot be added

to both and ~~ wi thou t creating < 0, hence C must s a t i s fy  (ii) . F ina l ly ,

if (i ,j )  e A 0
’\A~

, then ~ ca nnot be added to either or ‘~ withou t making cj ~ < 0,

hence condition (iii~ must also hold.~

Given the node set S~ of a subtour , we have to check whether  a set

of lines C satisfying (i), (ii), (iii) exists. This can be done as follows.

First , every row i e S~ such that (i , j )  cA 0 for some j  c N \ S ~~
, and

every column j cS~ such that (i,j) eA 0 for some i eN\S~ , can be ruled out

as a candidate for entering C. Let R and K be the tnd~x sets of such

rows and columns respectively, , and let

(igNI(i,j)cA~ 
and j.x),

Cj cN l (i , j ) c A~ and teR).

1 $

____ 
_ _ _ _  —
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Since by (i) every cell of A~ must be covered by at least one line in C,

C must contain 11JJ1. For the same reason, if

(15) A~~f l R f l K # O

then no positive penalty can be applied to the arc set (S
~
,S
~
).

Since by (1.) and (ii) every cell of A~ must be covered by at most one

line in C, if

(16) At fl I
i fl 

~i ~
then again no positive penalty can be applied to the arc set (S

~
,S
~
).

Now assume neither (15) nor (16) holds. Then if (11,J1
) covers A~, we set

a I U J and we are done; otherwise we use the Hungarian algorithm to

complete the search for a cover satisfying (i), (ii), (iii) . If such a

cover exists , the Hungarian algorithm finds it , and ~~~~ given by (13) can be

applied as a penalty; otherwise the Hungarian method finds a cover which violates

some of the conditions (1.), (ii), (iii), in which case no positive penalty can

be applied .

If T2 is the index set of the inequalities (7b) which admit positive

penalties 
~~~~~

‘ 
we have the following

Proposition 7.

(17) B2 B1
+ Z

t aT 2

is a lower bound on the value of the current subproblem .

Proof. Whenever a penalty 
~~ 

> 0 is applied to an arc set (S
~
,S
~
)

associated with a constraiit (7b), the cost function of AP is modified , and

the value of the solution , hence also the value of a solution to the dual

of A P , the assignment problem with the modified costs , is increased by

~~~~~~ Thus , a f t e r app lying 1T 2 1 penalties 
~~ 

the value of an optimal

solution (ci ,~ ) to the dual of AP is

_ _ _ _ _ _  

-

~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~--  -
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+ E a v(AP) + E lS~I~~.iaN jaN taT2

Using Proposition 1, and noting that a~ — 1 for t a T
1 and a~ 

a I - I 5
~

1
f or t a T2, we obtain the lower bound

— E + E + E + E ~l 
- tS t I)~~icN JaN tcT1 taT2

= v(AP) + E X t + E
taT1 taT2

~ 
IJ. t . II

t aT2

2.3. Bounding Procedure 3 searches for inequalities of the form (7c) which

are violated by x and admit a positive multiplier v
~ 

without requiring

changes in the multipliers assigned earlier . This is done by checking for

each node whether it is an articulation point of C0. If node k is an articula-

tion point , i . e . ,  if the subgraph ‘(N - tk~~ of G0 is disconnected , with S~
as one of its compo nents , then denoting K~ = (S

~~
,S \ ~k)) and K~ a (S

~
\ [k) , S~

)

we have

% f l A0 — ø , K~~f l A0 = ø .

Thus we can apply a positive premium to the arcs in the pair of

cutsets K~, K~, whose value is

(18) V a mm ct 
(i,j).K~UK~ 

ii

If T
3 is the index set of all those inequalities (7c) foumd to admit

a positive multiplier , at the end of Bounding Procedure 3 we have (from

I

-I

—~- - •—--~ ----- ‘ — ~- .~~~ . - —.‘- - a 
- _____________
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Proposition 1 and (17)) the lower bound

B3 — B 2 + E V
taT3 

~

(19) v(AP) + 
~ 

E V
t

.

taT1 taT~ taT3

If at any time during the Bounding Procedure the current lower bound

matches (or exceeds) the upper bound given by the value of the best

available tour , the current subproble.m is fathomed and we turn to

another node of the search tree. Otherwise, after obtaining the bound

B3 we try to find a tour in C0.

2.4. Example 1. Consider the 9-city TSP whose cost matrix is shown in Table 1.

1 2 3 4 5 6 7 ~

1 X 2 8 U 15 12 12 11 13

2 8 X 4 12 18 U 12 14 17

3 6 9 X ~5 ~ ~7 13 U U

4 U IS 17 X S B U 15 11’

rr .~~ = 5  :0 11 16 ~s Table i
U

6 -, 7 Ii ) U X 3 7

7 7 7 2 4 1 1 -
~~

8 U 7 - U U 13  ::
5 11 ~3 2 7 7

The solution to AP has value 31. The reduced cost matrix IC jJ) is

shown in Table 2 and the solution x is given by a 
~ for those (i,J)

corresponding to boxes in that matrix, • 0 otherwise. The corresponding

admissible graph is shown in Fig. 1.

- -- 
- j -

_
-.——-—= ~~~~~~~~~~~~~~~~~~~~~~~~ 

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ — ____1 ~~~~~~~~~~~~~~ — —
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: 2 • -
~

- 2.. • : 3 :
2 4 .~ 14 ~D J U i.

3 -, 3 X i U U 7 -; i i
-)

-. ~, 1’) 12 ~ 3 6 1~ 11

Cc ~~~~j— S U 13 1~ x :3 -~ 12 1. 1 Tab~ .e 2 .

o 4 4 8 6 1 1 X 3 -~ S

3 5 4 1) -
~ X 1 6

8 0 6 3 5 8 6 < )  .< jOj

9 7 3 7 9 b j D ’  5 5

Bound ing procedure 1. Cut set a ( [1~2,3J, c4,5,6,7,8,9) admits 4,

and cutset K2 ~~~~~ Cl , 2 ,3 ,6 ,7 ,8 ,9) ) admits • 3. The lower bound ,

from (12), becomes B
1 31 + 4 + 3 • 38. The new reduced cost matrix is shown

in Table 3 and the correspond ing admissible graph in Fig. 2.

1 2 3 4 5 0 — 8 3

I X 0  t~ 5 ) 6 6 5 7

H 2 4 X O~ 4 10 ., 4 6 9

3 O~ 3 X 5 10 3 3 7

4 5 X 0 3 7 8

r~~~U 5  4 8 tO 0 x 10 6 ‘ I  —

1] — 
—

6 4 4 5 ii X 0 -1 5

7 3 5 4 0 2 9 x c<
8 0 ~ 3 5 4 0 ‘3 X 0

3 7 3 7 ‘9 6 3 .  5 5 X

_____  
--  - -
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3

92 

1

Fig 1._ Graph c efmned by the A? solution,

H

/ 

~~~9

1

Fig 2. C~~after bound~n~~Drpc~~u~~JL

L - 
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Bounding procedure 2. The subtours of the AP solution are (1, 2 , 3 ) ,  (4,5) and

(6,7,8,9). Subtours (1,2,3) and (6,7,8,9) do not admit positive values of

However , inequality (7b) for subtour (4,5) is

- (x 45 + x54) 2 -1,

and a set C of lines of the matrix of Table 3 satisfying the conditions of

Proposition 6 for this subtour is given by: (row 5, column 5). From this

set C we compute • 2. From Proposition 7, the lower bound becomes

B2 38 +2 a 40.

The new reduced cost matrix (C j j I is shown in Table 4 , and the corresponding

admissible graph in Fig. 3.

1 2 3 4 5 6 7 8 9
‘9

I x . 0 ~ 6 5 7 6 6 5 7

2 4 X ~ 4 8 6 4 6 9

3 0. 3 X 5 8 7 3 0 7

4 5 7 9 x o~ 0 3 7 8

5 2 6 8 0~ X 8 4 7 5 TaL~1~~~
6 ~ 4 8 6 0 x 0 4 5
7 3 5 4 0 0 9 x ~0 6

8 0 6 3 5 6 6 9 X 
•~~~~

9 7 3 7 -9 4 0 5 5 X

Bounding procedure 3. Vertex 8 is an ar t iculat ion point of the admissible

graph of Fig. 3. The cutsets corresponding to this articulation point are

• ([1,2,3), [4,5,6,7,9)) a nd K~ a ([4,5,6,7,9), [1,2,3)). Applying (18) to

Table 4, we obtain v
~~

a2 , corresponding to element (5,1). From (19) the lower

bound becomes B~~a 40 + 2 • 42. The new reduced cost matrix and the corresponding

admissible graph are shown in Table 5 and Fig. 4 respectively.

~~~~~
—

~~~
--

~~~
— -‘

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——
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2

I

6
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Fig. 4 , G ~ after bounding orocedure 3.
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I 3 5 -) ~ ,

~ 5 4 -. 5 5

2 4 .~ H 2 6 4 2 6 7~
3 ~~ 3 x 3 6 5 1 0 5

4 3 5 7 x T 0  3 7 8 Table S

[c ] =  5 0 4 6 N 8 4 7 5
- 

6 2 2 ‘3 6 9 X 4 5

7 1 3 2 0 (3 9 6

~ 0 o 3 5 6 6 9 X

9 S 1 5 <3 4 5 5 x

3. Finding a Tour and Improving the Bound

Establishing whether a graph contains a tour ( i . e . ,  is hamiltonian)

H is , from the point of view of worst-case analysis, of the same order of

difficulty as finding an optimal tour. However, for the vast majority of

all possible graphs , the first problem is incomparably easier than the second

one. We use a specialized implicit enumeration procedure , the multi-path

method of (4], ch. 10, for finding a tour in C0 if one can be found without

exceeding a given time limit. Let ~ denote the solution associated with such

a tour. If ,~ satisfies with equality all inequalities associated with positive

multipliers (i.e., if the tour defined by ,~ crosses exactly once each cutset K~
, taT1,

contains exactly ~s~ j - I arcs with both ends in S~ for all sets S~ , t a T 2,

and contains exactly one arc of each pair of cutsets , K~ , K~
’, t CT 3), then

~ defines an optimal tour for the current subproblem , and the latter is fathomed .

For example, after bounding procedure 3, when C
0 is the graph of Fig. 4,

the following tour is detected in C0
: H~ (1,2,3,8,9,6,7,4,5,1). This tour

satisfies with equality all four constraints with positive associated

Lagrange multiplier.; i.e., H contains exactly one arc of each of the cutlets

K
1 

and K2 , Contains exactly one arc of the subtour [(5,4), (4,5)), and

contains exactly one arc of the set K~ U KI. Thus, H is an optima l solution

to the TSP and B
3= 42 is its value. 

~~~~~~~~~~ ‘w-- — 
_________
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If an inequality that is slack for ~ belongs to one of the sets (7a)

or (7b) , we at temp t to s t rengthen the current lower bound by introducing

some new inequali t ies (of the same type) tha t are t ight for  ~~~, and that

admit positive multipliers. If the attemp t is successful , it may also

result in the removal of the inequality that is slack for i.

3.1. Bounding Procedure 4. Suppose the inequality (7a) associated with

the cutset Kt is slack for ~~~, i.e., the tour i1 defined by ~ intersects

in more than one arc, and let HflK
~ 

= [(i1,j1
),...,(i ,j )). For every

(i ,j) a H1~ let 5r be a set of nodes containing 
~r 

and such that , denoting

• N\Sr, the cutset Kt = (~r 5r) contains no other arc of H than Ur~
1r~

Then the inequalities

2 x
~ 21 , r — l ,...,p

(i
~
j)tKcr ~

are all satisfied with equality by ~ . Since every Ktr contains an arc with

zero reduced cost, namely the arc 
~~~~~~ 

also contained in K
~
, the above

inequalities do not admit a positive premium, unless the premium

applied to Kt is reduced . If this is done , however , then a positive

premium may be applicable to several of the sets K~~,and the sum of these

premia may well exceed the amount by which must be reduced , i.e., an

improvement of the lower bound may be obtained . The conditions under which

this is possible are stated in the next two propositions .

Proposition 8. The tour H intersects the cutset K~~~a (~~ ,8
r
) 
~~

ly in

the arc (ir~
jr)~ 

if and only if the arcs of H with both ends in 8r form a

path whose first node is

:

~

:

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~JHHTTI _. 
- - - _ _ _ _ _ _ _ _ _ _
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Proof. Let H = (1(1),. ..,i(n)3, and without loss of generality,

assume 
~~~~~~ 

= [i(l),i(2)}. Now suppose either ~
r 

= [j(2)), or the

a rcs of fl w i th  both ends in form a path [1(2),... ,i(k)). Then H

intersects the cutset K
~ 

= (?r ,Sr ) in the single arc [i(I),i(2)1 = (i , j ) .

Conversely, suppose S~ ~ [j(2)) and the arcs of H with both ends in

either form a path P whose first node is not j(2), or do not form a path . In

the first case, 
~
r1K

tr 
= [i(h) ,i (h+l)] , where i(h+1) is the first node of P.

In the second , the arcs of ii with both ends in S
r form k paths 

~l’~ ••’
~k’

with k 22; and H1i
~t 

= 11(h l ) , i(h l fl,...,ti (hk),i(hk+1)I, where i(hr
+l)

is the first node of 
~r’ 

r =

Proposition 9. A positive premium can be applied to the cutset

(provided that is decreased) if and only if

(20) (K
~

\ K
~
) ~ A0 = 0.

If R ~ 0 is the set of those ra [l ,...,p) for which (20) holds , the

maximum premium applicable to each Ku., r eR , is

(21) ~
r 

• mm [x e , mm > 0;
(i~j)cIc~~ K~

provided the premium X~ applied to K~ 
is replaced by

(22 ) ç • - max ~
r
.

r aR

This rep laces the current lower bound B by

(23) B’ • B + 2 X r 
- max

rcR raR

Proof. A decrease in increases the reduced costs of all arcs

of K
~
; hence makes it possible to apply a positive premium to the arcs 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ - ~~~~~~~
- -

~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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of those, and only those , cutsets K
~ 

satisfying condition (20) The

maximum size of the premium on II
~r~~

S ~
r defined by (21), positive for

those r for which (20) holds. The premia ~
r are however app licable only

if is diminished by the amount o f the largest premium app lied to the

arcs of any cutset K~, i.e., only if is replaced by X~ of (22)

(othe rwise some of the reduced costs become negative).  If this is done ,

the current lower bound B is rep laced b y

B’ = B + 2 ~r + (X - X~
)

r eR

which yields (23) after substituting for

Bounding Procedure 4 looks for cutsets K t to which a pr emium 
~~~ 

> ~

had been app lied and which are intersected by the tour H in more than one

arc . For each arc 
~~~~~~ 

of H that belongs to such a cutset K
t
, we try

to find a set 5r of nodes containing j and satisfying the conditions

of Propositions 8 and 9; i.e., such that the arcs of H with both ends in

form a path whose first node is j ,  and that the cutset 
~tr 

(~~ ,8
r
)

satisfyies (20). As a matter of practicality ,we first try 18
r

1 = 2, then

lS~ 
a 3 etc., until either we find a set which satisfies (20) or we find

out that none exists. Taking the candidate sets in this order makes sense ,

since smaller sets define smal]er cutsets K~. over which one takes the

minimum in (22) to define the premia

If no sets 5r with the desired properties is found , we take another

arc of H f l K
~
. Otherwise we compute ~

r, the premium to be app lied to the

cutset Ktr~ 
using (22); and then take the next arc of H f l K

~~
. When all arcs

of H
~~

K
~
have been examined , we compute the new value of the premium
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app licable to the arcs of Kt , 
as given in (22), and rep lace X

~ 
by \

~~
. All

this rep laces the reduced costs by

c
~~. - (i,j) €K \K , r aR

- . 
- ~r + max (i,j) c I~~f l K , r e R

~~ = SCR t

U

~~i j  + max (i , j )  e K
~~\ 

( U K
~5
)

saR 5cR
all other (~ , j )  cA

and the lower bound B by B’ defined in (23). If 
~~ 

>0 , the inequality

associated with Kt (which is slack for ~) continues to be represented in

rthe Lagrangean form (1 ).  If , however , = 0, i.e., max X = X~~, then
r aR

the inequality corresponding to K
~ 

is removed from (I’) and we have

succeeded in rep lacing this constraint~ slack for the solution ~~~ , with a

set of inequalities that are all tight for ~ .

If T~ is the index set of those inequalities (7a) that are slack for

~ and for which IR I ~ 0 , and if we attach a subscript t to the index sets

R associated with each cutset K
t 
and to the premia ~

r indexed by R , then

at the end of Bounding Procedure 4 we have the lower bound

(24) B4 = B3 + : 2 - max X~ .
taT raR taT. reR1 t t

3.2.  Example 2. Consider the reduced cost matrix of Table 6 resulting from

the solution of AP for sri 8-city TSP. The value of the AP solution is v(AP)

= 50. The admissible graph is given in Fig. 5.

_ _ _ _ _ _ _ _ _ _  — _ _ _ _ _ _ _  _ _ _ _ _ _ _
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1 2 2 4 5 6 7 8

1 X 5 7 7 8 t3

2 3 x 8 4 6 9 5

3 9 5 .
~~ 5 7 3 4

-.4 4 7 6 X 6 5 6 9 Table 6
5 6 4 5 6 x 2 5

6 7 C 8 9 X 6 4

7 8 9 7 6 6 8 X

8 5 4 5 0 8 2 x

Applying bou nding procedure 1 and taking cutset K1= ( [1 ,2 , 3 ,4) [5 , 6 , 7 ,8})

we obtai n ?~~= 3 and hence B1= 53. The reduced cost matrix [c
ii ] is sh own

in Table 7 and the admissible graph C
0 in Fig. 6.

1 2 3 4 5 6 7 8

I X 5 7 0 4 5 3

2 3 X 8 3 6 2

3 9 5 x 2 4 0 1

4 7 c~ X 3 2 ~ Table 7
5 4 5 h X ~~ 2 5

- .  

6 7 ~ 0 x 6 4

3 ‘3 •7 6 6 8 <

—9 5 4 5 0 8 2

Bounding procedure 1 is comp lete and boundi ng procedures 2 a nd 3 are

unsuccessful in improving the bound beyond 
~l ~~

_ _ _ _ _ _  -.  — — —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Fig . 5. Graph G0 de f i ned by the AP solution.
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/-..... K1 () 133)

Fig. 6. G
0 after bounding procedures 

1, 2 and 3.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

r
~~~~~~~

.- _ - - —— ~~~~~
- -..—--



-23-

A tour H = (1 ,5,6,2,3,7,8,4,1) is detected in C0, but H contains

two arcs of the cut set K1, and ~s the refore not necessarily opt imal .

A pplyi ng bou nding procedure 4 to K1, we identify the cutsets K1 1
([1,2,3,4,5,6), [7,8)) with X~~=2 , and K1 2

= ([1,2 , 3,4 , 7 ,8) ,  [5 ,6 1) with

2, while reducing the multiplier associated with cutset K
1 from

3 to 1.

The new reduced cost matr ix  is given in Table 8 and the assoc iated

admissible graph is shown in Fig 7.

1 2 3 4 5 6 7 8

1 X 5 7 0 1 5 3

2 3 X 3 1 3 6 2

3 9 5 X 2 4 0 1

[ ci  = 1 7 6 X 3 2 ~ Table 8
5 6 4 5 6 X 0 3

6 7 0 8 9 X 4 2

7 3 9 7 6 4 6 x

8 5 4 5 0 6 0

The lower bou nd is now improved from 53 to B
4 = 53 + 2 + 2 - 2 = 55 ,

as given by (24).

Next we turn to the inequalities (7b).

3.3. Bounding Procedure 5. Suppose the inequality (7b) defined b y the

node set S~ is slack for ~~~, i.e., the tour ~ contains fewer than ~S~~-I

arcs of the set (S
~
,S
~
). Let G~ be the subgraph of C induced by the arc

set fl (S
~
,S
~
), i.e., the graph consist1~ng of those arcs of the tour H

with both ends in S~ , and the end-nodes of these arcs. Note that

H fl (S
~~
,S
~
) may be empty , since it is possible for a tour to contain all

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- —4
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nodes in S
t 
without containing any arc with both ends in St ; and when this

is the case , no new inequalities can be derived from S~ .

Assume now that H fl (S
~~

S
~

) ~ 0 , and let C 1 , . . . , C~ be the (connected)

components of G
t
. For q e Q  [1 , . . . ,~~) ,  let and denote the node set

and arc set , respective ly , of ~~~ By construction , each is an open

4 (directed) path , with 2 < 15
q

1 < 1S~I - 1 and 1~~1 • - 1; henc e i~

satisfies with equality each of the inequalities

-

~ E~~~ E 
q

X
j 

~~~~~~~~~~ q sQ
ic S l a S

or , to put them in the form (7b),

(25) - E q q Xii ~~~ 
1 - ~~~ , q a Q .

i c S  jeS

Since (~~ ,5~ ) f l A0 ~ 0 ,y q c Q ,  these inequalities do not admit a positive

penalty (without a change in the dual variables ~, )  , unless the

penalty 
~~ 

associated with S~ is reduced. If, however, this can be done ,

then eac h of the inequalities (25) admits a positive penalty and the current -

lower bound may be strengthened . The next proposition states the conditions

for this.

Let F
~ 

be the set o f those arcs of G having both ends in S~~, but not

both ends in the same set , for any qeQ; i.e., let

F
~
= (S

~~
,S
~
) - U (5q 5q)

q t Q

Proposition 10. A penalty ~~ > 0 can be applied to each of the arc

sets (5q ,5
q), q cQ (provided that the penalty 

~~ 
is decreased), if and only

if

(2 6) Ft f l AO = 0 .

~~~ ~~~~~~~~~~ - - ~~~~~~~~~~~~~~~

- --
~~~~~

-

~~~~~~

-

~~~~~~~~~
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If (26) holds , then

(27) = mm ~~~ . > 0
(i , j )  c F ~ 

~

and the penalty can be applied to each arc set ~~~~~~ provided that the

penalty 
~~ 

applied to (S
t,St
) is replaced by 

~~~~~~~~~~~~~ 

. This replaces the

current bound B by

(28) B’~= B + (IQI -

Proof. Since (5q,5q) C (S
~
,S
~
) and (5q ,5

q ) fl A ~ 0 , yq e Q  , a positive

penalty ~~ can be applied to any (and all) of the arc sets ~~~~~~ if and 
S

only if the penalty 
~~ 

applied to the arc set (S
~
,S
~
) can be reduced by the

same amount . This, however, is possible if and only if no arc in the

set F
~ 

has a zero reduced cost (i.e., condition (26) is satisfied)

and does not exceed the reduced cost of any arc in Ft . When

these conditions are present , all arc sets ~~~~~~~ q e Q  , can be penalized

by the amount ~~ specified in (27), provided the penalty 
~~ 

on the arc set -
(S
~
,S
~
) is replaced by 

~~~~ 
- . The effect of all this on the lower bound

is to add as many times as the number IQ I of components of C~ , and to

subtract ~~ once; i.e., to add to the current bound B the amount

( IQ I - 1 )
~~~~~~~~~

.

Bounding Procedure S takes an inequality (7b) that is slack for ~~~~, forms

the associated arc set F
t 
defined above, and checks condition (26). If (26)

is not satisfied , nothing can be done, and the procedure goes to the next

inequality that is slack for L If (26) holds, we calculate ~~ 
given by (27),

and penalize by ~~ all arc sets (3~ ,5~),q6Q, defined by the components of

the graph G~ ; while replacing the penalty 
~~ 

on the arcs of (S
~
,St), 

by

-
~~~ 

. This replaces the reduced costs by

1 $

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~

— — -—-- - 
~~~~~~~~~ r ‘- — ~~. ~~~~~~~~~~~~~~~~~
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{

~~ii 
- (i ,j ) c F

~

~ij 
, (i ,j) cA\F

~

and the current lower bound B by B” defined by (28). If < the

inequality (7b) defined by the vertex set S
t (which is slack for it)

continues to be part of the Lagrangean expression (I’); if, however,

— i.e. the penalty associated with the inequality in question

becomes zero, then we have succeeded in replacing this inequality in (1’)

by a set of other constraints that are all tight for X

Next the procedure goes to another inequality (7b) that is slack for

~c. When all such inequalities have been examined , let T~ be the index set of

of those among them for which condition (26) was satisfied , and for each

t c T~ , let 1Q
~1 be the number of components of the graph C .  Bounding

Procedure S then produces the lower bound

(29) B5 
a B4 + t ~~~~~~~~~~ 

.
t c T 2

Finally, we tu rn to the inequalit ies (7c ) .

3.4. Bounding Procedure 6. Suppose the inequality (7c) associated

with the articulation point k and the cutsets K~ ~~~ 
S~ \ [k)),

- I K~’ = (S~ ”~[k}, S~
) is slack for ~, i.e., the tour H defined by ~ contains more than

one arc of the set K~ UK
’ , and let Ii i’ (K

~
’U K

~
’) ~~~~~~~~~~~~~~~~~~~ For

every (ir~
jr
)CH fl (K

~
U K

~
’)
~ 

r • l , . . . ,p , we will specify a node set

SrcN\tk) such that,denoting jr a N\St and K~ (sr,F\(k)), ~~~ a

the only arc of ~ contained in K~r
UK

~
’
r 

is (it.~ir
)
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ . -- ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~. ~~~~~~~~~ ~~~~~~~~~
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Proposition 11. The only arc of H contained in K~~~U K ~’ is

if and only if = S\[k), where S is the node set of one of the two paths

P1 
= {k,... ,i )  and 

~
‘2 

= t
~r

’
~ 

. . ,k) in

Proo f. Assume = S\[k), where S is the node set of P
1 

or P2 . In

the f irst case , H f l K
~r = [(ir~

jr)) and HflK~~ 0; in the second , H f l K ~

and Hfl K = 

~~~~~~~~~ 
In both cases , 

~
tm ’1r~ 

is the onl y a rc of H contai ned

in K~~ U K ” .

Conversely, let (ir~
j) be the only arc of H contained in K~~ U K~’.

Then either [(i ,j)) = HflK~ and H1)K~
’ = 0, or [(ir~ir)) 

= H f l K  and

H f l K
~r 

= 0. In the first case, H enters 5
r 
from k rather than from some node

of ~
r\[k) since Hfl K ’ = 0; and it exits ~

r 
exactly once , through m r~

hence S’~ = S\[kJ, where S is the node set of P1. In the second case, H

exits S~ through an arc whose front end is k , rather than some node of

since HflK
~~ 

= 0; and it enters 5r exactly once, through 
~
1r~

hence 5r = S\[kJ, where S is the node set of

Thus, if the node sets S
’S
, r = 1, . . .  ,p ,  satisfy the conditions of

Proposition 11 , then the inequalities

-> ~JTT; x~1 
> I , r = 1 , . .  ., p

( ,j)a tr tr

are all satisfied by ~ with equality. The next proposition states the

conditions under which a positive premium can be app lied to the sets K~~~UK ~
’.

Proposition 12. A positive premium can be app lied to the arc set

K~~ UK ~’ if and only if

(30) r U~~ r)”~
Kt1 flA0 

— 0.

- 
. __.=7~_ _  . — --P--.—- ~~~~~~~~~~~~~~~ ,. ~~~~~~~~~~~~~~~~~~~~ 

- - _______
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If R # 0 is the set of those rc[l , .  . .  ,p~ ,for  which (30) holds , the

maximum premium applicable to each K ’ UK ” , raR , is

(31) ~
r mjnjv mm

(i , j) eK

where K a (K
~~

U K )\K
~
; provided the premium v

~ 
app lied to Kt is

rep laced by

(32) = - max r

raR

This replaces the current lower bound B by

(33) B ’ = B +  t~~~~_ m a x vr.
reR reR

Proof. Analogous to the proof of Proposition 9.~

Bounding Procedure 6 looks for indices taT
3 for which a positive

p remium 
~~ 

has been applied to the arc set K~~LJK~
’ , and for which

H f l  (K~ L K ~’) = [(1 1,j 1) , . . . , (i  , j f l , wi th p ‘ 2. Given such a taT3,

for each re[l,.. . ,p} we use the node set of the path P = (k,. . .  ,i~~ in H ,

after removing from it node k, to derive an arc set of the form K ’ UK ”
tr tr

defined in Proposition 11. We then check whether K~~~2K~
’ satisfies (30),

and if so, we calculate the prem ium ~v
r to be app lied to K;r L;K

~~.
; otherwise

we move to the next re(l,...,p}. When all arcs of Hfl (K
~
’LK

~
’
~ 

have been

examined, we compute the value of the premium applicable to the arcs

of K
~
, as given by (32), and replace v

~ 
by 

~~
. All this replaces the

reduced costs by 

-‘
~~~~~~~~~~~~~~~~~~~~

-
_ ~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~ .
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( 

- 
r (i,j)€ (K~~~~K

” )\K , r€R

- 
r 
+ max ~~ (i j)e(K ’ UK ”) ~ K , reR

seR
H 

= 

+ max ~~
S (i ,j)€K

~
\ U (K~5 U K~~)

seR 5cR

c all other (i,J)cA
‘.. ii

and the lower bound B by B ’ defined in (33).

H As in the case of Procedures 4 and ~, U a 0, the inequality

associated with K~ U K ~’is removed from the Lagrangean function (1 ’),

otherwise it stays there with the new premium.

Let T be the index set of those inequalities (7c) that are slack for

~ and for which ~Rj ~ 0, and let us attach a subscript t to the index

set R associated with K~ U K~’and to the premia 
,~
r indexed by R. At the

end of Bounding Procedure 6 we then have the lower bound

(34) B~ • B~ + ~~ 
- Z 

+ 
max r

tcT reR
~ 

taT3 reR
~

Natu ra l ly ,  if at any stage of the bounding procedures described above

the lower bound for  the current sub prob lem matches the upper bound on v(TSP )

given by the value of the best tour at hand , the current subproblem is fathomed .

At this point we may find ourselves in one of two possible situations :

(~
) we have found a tour in C0, a nd used i t  to obtain the lower bound B6

on the value of the current subprobletn ; or (8) the attempt to find a tour was

unsuccessful , and 33 is the best lower bound we have for the curren t

subproblem. In case ( 8) ,  we defi ne C — (N,A 5), with A — ~(i~ j)aA~c~ 1 
< a ) ,

where the are the current reduced costs and a is the smallest number

for which we are able to find a tour in C within the given time limit . In

-4

_ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~— -  -~~~~~~~~~~-~~~~~~~~~ -
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either case , we de note by H the tou r at hand , by ~ the associated

solution , by c1~1, (i ,j)aA , the last set of reduced costs , and by B the

lower bound for the current subproblem . Obviously c~ , where c is the original

cost vector , is an upper bound on v(TSP), and the best such upper bound at

each stage will be denoted by B*.

3 .5 . Computationa L complexity of the bounding procedures. Each of the six

bounding procedures discussed in sections 2 and 3 is pol.ynotnially bounded .

For each of them except for the first one, the number of operations required

in the worst case is 0(n3), where n is the number of cities. For procedure 1,

this number if 0(n
4
). Solving the assignment problem at the start also

requires at most 0(n3) operations .

At every node of the search tree , the bounding procedures are applied

once (after solving the assignment problem , if necessary) in the order 1,2,3.

If at that point the node was still not fathomed (i.e., the lower bound is

still below the current upper bound~ , an attempt is made at f ind ing  a tour in G0.

Though there is no algorithm guaranteed to accomplish this in polynomial time ,

we let our implicit enumeration procedure run only for a fixed amount of time ,

that is an input parameter defined as a linea r function of n. If a tour is

found , bounding procedures 4,5,6 are applied in that order; otherwise we

branch .

In conclusion , the amount of work performed at any given node of the

search tree ii 0(n4) in the worst case.

4. Branching Rules

Before branching , we attempt to fix some variables by using the

bounds B and B*. Let

Q0 
• [(i,j)cA jci1 

“ B* - 

~~~~~~~~~~~~~~~~~~~~~~~ . - ------.- --— — —- -- —- .- ---- - — - . -
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It is not hard to show (see f 11) that , if the reduced costs c • •  are derived

from the same dual solution and Lagrange multipliers as the lower bound B (as

is the case here) , th en any solution x to TSP such that  cx < B*

must satisf y the condition x~~. = 0, ~ (i, j ) € Q 0. Hence we set x~~. = 0, (i , j ) € Q 0
for the curren t subprob lem and its descendants , i . e . ,  we replace A by A\Q0.

Next we describe two branching rules, which we use intermittently.

The first rule derives a disjunction from a conditional bound [1]; the

second rule derives one from a subtour-breaking inequality.

4.1. A dislunction from a conditional bound can be obtained as follows .

Consider a family of sets Qk
CA , k = 1,... ,p, such that > 0,

k = I,.. .,p. Then if the inequalities

I.
- 

- x~ 1 , = 1,... ,p

‘~~~~k

were added to the constraint set of LP, the lower bound B could be improved

by choosing appropriate multipliers for these inequalities. Further, if

this improved bound (termed conditional , because of the hypothetical nature

of the inequalities) matches the upper bound B*, then every solution better
than the one associated with B* violates at least one of the above inequalities;

i.e., satisfies the disjunction

p
(35~ V (x i .  0,

k= 1. -~

To implement this princip le , we f i rs t remove from the Lagrangean

function (1’) all those inequalities (7a) and (7c) that are slack for ~

while the associated multiplier w~ is positive . If T+ is the index set of

the se inequali t ies , thi s remova l amounts to rep lacing B by

B - B -  ~ w
tcT+ t 

-
- 

— 
-._--- 

_
~~~~~~~~ -~~~

_•
- --~~~~~~~~~ S ~~~~~~~~~~~~ — - :

-
:.:I.

~
1_

~
.!r;;: 

- —
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and c . bv
iJ -

~~~ . .  =~~~~~~. .  + a
t
w

~~~~ ~~~ t€T
+ ij 

t

for (i,j ) c A .

Next , we choose a mininium-cardinality arc set SC1! such that

(36) ~~~~~~~~ ~~~~~~ . ~~- B* - B.
(i, j ) eS ~

The existence of such SCH would be guaranteed if we removed from

(1’) all inequali ties (7) tha t are slack for  i (see [ 1] for  a proof) .

However , removing the inequa lities (7b) would either produce negative

reduced cos ts , or would require a recalcula tion of the u~ and v .. To avoid

this recalculation , we restrict ourselves to the removal of inequalities

(7a) and (7c) , taking the risk of not being able to find a set 5CR sat is fying

(36). Whenever this happens , we app ly the second branching rule , to be

discussed below.

Given that (36) holds , let S = [(i 1,j 1) , . . .  ,(i ,j )). We then

construct a p x IA~ 0—1 matrix D = (d~~)bY setting d~ . = I in each column

(i ,j) for as many indices ke[l,.. . ,pj as possible , subject to the conditions

(37) ~~~~ I , k = I, . .. ,p

and

(38) E di4~ i ~ ~~~~~~
. , (i,j)cA

k’=l ~ k~k

These constraints leave some freedom for choosing the entries ~~ of

each column (i ,j)aA , which we use to make the number of l’s in each row as

close to equa l as possible.
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Proposition 13. Every solution x to TSP such that cx < B* satisfies

the disjunction

p
(39) ‘\.j (x.. = 0,

k=l

where

(40) 
~k 

= [(i, j ) eA~d
k 

= 1) , k = 1,... ,~~.
i3

Outline of proof (see [ I I for details). If violates (39), it satisfies

(41) ______ x.~ ‘ I , k = l ,...,p.
- ~. 

(i,j)cQk

Adding (41) to the constraint set of LP and assigning the multi pl ier (d ual

variable) ~~~ . . to the k th inequality (41), yields the lower bound1k3k

p 
_ _ _B + E & . = B + Z ITT & -

k=l ikik (i,j)€S ~

> 8*

where the last inequality follow s f r om (36~~. Hence cx ~> 8*.

The disjunction (39) creates p sub problems . In the k
th 

subproblem

we have X
j j  

0, (i ,j)€Qk ,  and since ( ik ,j k)€ H flQk, the tour H becomes

infea sible for  each of the sub problems . On the other hand , the current

solution to AP remains feasible for  each of the sub prob letns .

4.2. A disjunction from a subtour breaking inequality is obtained in the

usual way; I.e., if S is the arc set of a subtour of the A? solution , then

every solution to TSP satisfies the disjunction :

(42) \,/ ( x = 0 and x • 1, VI.~ < k-i)ikik

~~k’ ~~ 
eS

Li ~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~ ~~~~~~~~~ ______  ~~~~~~~~~~~~~~~~~~~~~~~~~ --
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At an a rb i t r a ry  node of the branch and bound tree , a subset S’~ S of the

a rc set S (of the subtour selected for branching) may alread y have been

fixed to be in the solut ion . In this  case set S i n d i s junc t ion  (42) is

replaced by S\S’ . Bra nching on (42) creates I s\s’ subproblems . For

each of these subproblems , the AP solution to the parent problem becomes

infeasible .

In choosing the arc set S for the disjunction (42), it is des irable to

give preference to subtours (of the current AP solution) having either a

minimum number of arcs (mm ~S~ ),or a minimum number of free arcs (mm ~S\S’ ~) .
In the computationa l tests  discussed in the next section we used the f i r s t

of these two criteria .

As to the two disjunctions (39) and (42 ) , an efficient procedure must

use them in termi t tent ly ,  since (39) can on occasion be considerably s tronger

than (42 ) ,  while a t  other times i t  can be much weaker. We tried several

rules for  mixing them , and the one a c t u a l l y  used in the tests is discussed

in the next sect ion.

5. Implementation and Computational Experience.

Our algorithm was programmed in FORTRAN IV for the CDC 7600 and tested

on a set of 120 randomly generated asymmetric TSP ’ s of sizes varyi ng between

50 and 325 c i t ies .  Here we discuss some fea tures of the imDl ementat ion , give

the computationa l results , and interpre t them.

5.1. Use of sp arsi tv .  Unlike in the case of those symmetric TSP’s whose

costs are based on distances and can therefore be generated whenever needed

from the 2n coordinates of the cities , in the case of the asvnsnetric TSP

one has to explicitly store the costs , whose number in case of a comple te graph

is n (n-1). However , our procedure derives both lower and upper bounds on

-~~~~ --- —--~~ ~~~~—

-

--

-
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-
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—

~ - - -~~-- -- --- ~ _ _ _ _ _ _ _ _ _ _



- 
- 

- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-— - - - --  - 
“ I’

35..

the value of the p roblem and , as discussed at the begi nning of section 4 ,

provides a valid criterion for setting to 0 certain variables. As it will be

discussed below , the number of variables tha t can be fixed at 0 before the

f i r s t b ranching is usua l ly  very high . Therefore at  that point we actually

remove from the grap h a l l  those arcs whose variables can be f i xed at 0 ,

and from then on we work with a graph (usuall y quite sparse) represented

b y a li st of nodes and a l ist  of arcs wi th  their  costs. Addi t iona l f ix ing

of variables (at 0 or 1) later in the procedure is handled differently

(see below).

5.2. Solution of the AP ’s. At every node of the search tree, a subset of

variables is fi xed a t  0 , another  subset is fixed at 1, and the current

p roblem is the one in the free variables .  A variable x , . is set to 1 b y

adding a large number M > 0  to al l  c
~k . k = 1 , . . . , n , k # j. A variable

is set to 0 by adding M to c
1~ . The reason for not simply removing the arc

f rom the graph, as done before the first branching, is that (a) the variable

and its cost may be needed later on another branch ; (b) the transition from

the old A? solution to the one for the new subprob lem is easier this way.

All AP ’ s are solved by the Hungarian algori thm modified as follows:

(i) A t every subproblem , we start with a solution derived from the solution of

the predecessor problem. In part icular , the growing of an a l t e rna t ing  tree

(in search of an augmenting path during the application of the Hungarian

algori thm) st ar ts  wi th a matching ( i . e . ,  a set of independent zeroes in the

reduced cost matrix) derived from the solution to the predecessor of the

current subproblem. A single augmenting path is almost always sufficient to

solve the current AP.

&

~

-

~ 

__ _ _ _ _  ~_~~
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~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(ii) Since the Hungarian algorithm is a dua l procedure, it can be terminated

prema turely whenever the value of the objective function exceeds the value of

the current upper bound .

5.3. Branching and node selectioc. The two types of branching discussed

in section 4 are used intermittently according to the following rule. A

branching of type I (based on dis junct ion (39)) is performed wheneve r a Set

of arcs Sdi, S = ~(i
1

, j 1),. . . ,(i ,j )). can be found , such that

(i) inequality (36) is satisfied ;

(ii) ~~ < + I, where o is the condinality of the smallest subtour in

the current AP solution; and

(iii) at least n/3 variables can be fixed at 0 on each branch .

Whenever any of the above conditions is violated , a branching of type 2

(using d is ju nction (42))  is performed .

The node selection rule used in the cede is to choose a successor of the

current node whenever available , and othe~~ise to select a node k for which

the following evaluation attains its minimum:

- 

. E(k) = fB(k) - v(AP)J :(O)-s(k).

Here 8(k) is the lower bound for subproblem k, v(AP) is the value of the

(initial) A?, while s(0) and s(k) are the number of subtours in the solutions

to the initial AP and the current one (at node k), respectively. The integer

s(k) is used as a measure of the “distance ” of the A? solution at node k from

an optimal tour.

5.4. Information stored for each subproblem. All subproblems are stored on a

linked list in order of increasing lower bounds. For each subproblem k the

following information is stored:

_____________ - -~~~~~~~--- - . - -
__________ - -~~~~~~~~ —--•. —~~~~ —---- - — —

~~~~
---- ~~~~~~~~~~~~~~~~~~~~~~~~~ - 
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- The AP solution.

- The va lue of the associated bound .

- A pointer to the father node of node k.

- A code to indicate the type of branching (one of the 2 types described

above) that produced node k.

- The number of sons of the father of node k.

- The rank (index) of node k among its brothers .

- If the type of branching that produced node k was based on disjunction

(39), we store the arcs in S = C( i 1,j1), . .  . ,(i ,j )}. If it was based on

disju nction (42) ,  then a pointer gives the subtour in the AP solution

corresponding to S in (42).

- A l ist  of the operations ( in  coded and ordered form) which produced

the current matrix fc 1~
] from the matrix for the predecessor node.

(This is not strictly necessary but speeds up considerably the

backtracking process).

5.5. Computationa l results. The above described code was run on the

CDC 7600 to solve 120 randomly generated test problems whose associated

(directed) graphs are complete and whose cost coefficients were drawn from

a uniform distribution of the integers in the range (1 , 1000!. The problems

belong to 12 classes based on size, with n = 50, 75,..., 300, 325 , and with

10 problems in each class. Table 9 summarizes the results . These results

are quite remarkable, in that the number of nodes generated is si rprisingly

small , and seems to increase only slightly faster than the problem size

(number of cities). This is also illustrated on Fig. 8, where the slope

of the cu rve is on ly sl ight ly s teeper for 200 � n 
~ 325 than for 50 ~ n < 200.

Note, also, tha t the maximum time required to solve any one of the 120

problems was 82 seconds .

L ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Since the ave rage cost of the va rious bounding procedures is not

proportional to their usefulness , we have tested each of the bounding

procedures individually and in subsets to see whether their use pays off.

The outcome of our tests was that using all  6 bounding procedures is more

efficient than using any subset in any combination.

Another remarkable feature of the approach discussed here is the large

number of arcs that can be removed from the graph (of variables that can be

permanently fixed at 0) at the root node of the search tree, as a result of

- 

- the test discussed at the beginning of section 4 . This is shown in Table 10.

The fact  that  such a high proportion of the arcs can be removed before

branching shows the power of the bounding procedures used in our approach .

For a comparison, if only the bound obtained from AP were used, then the

percentage of variables removed in problem classes 1, 2 and 3 would be on the

average 87’L (and this percentage does not seem to increase with problem size).

Thus, for problem class 3, for example , our bounding procedures reduce the

number of arcs remaining in the graph from the l37~ that would be left by the

AP bound , to 2.97,.

Table 10. Percent of arcs removed on the average at the root node.

[~~ob1em class 1 2 3 4 5 6 7 8 9 
- 

10 11 12

Arcs r:rnoved (:ver~~ e) x 100 ?5.3 96. 4 I 9 7 . l
~

97 .3 97.5 97.6 97 .9 198 .1 98. 4 98.3 98.6 98 .7

In connection wi th the two branching rules , it is important to mix them

judiciously. While rule 1 (disjunction (39)) often allows one to fix more

variables than rule 2 (disjunction (42)), if used as the only branching rule

it yields inferior results , since occasionally it is very bad. The mixing

strategy used in the above runs (and discussed under 5.3) has resulted in

rule I being used only at  the upper levels of the search tree (often at level

I, or I and 2, only). To compare the results obtained by using this strategy

with those obtainable by using rule 2 only, we ran 4 of the 12 problem sets

(i.e., 40 of the 120 problems) with branching rule 2 only. Table 11 compares

the results.

~~~~~~~~~~~~~ : : T~~~~~~~
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Table II. Comparison of branching rules

Class n Average no. of nodes Computing time (CDC 7600 sec .
- 

I I Rule 2 Mix of Rule 2 Mix of
rules I and 2 rules I and 2

1 50 - 10.3 12.3 .29 .20

3 100 31.9 39.1 2.10 .71 -

5 150 36.8 45.7 4.60 1.97

- 

- 

7 200 49.9 63.4 11.68 6.06

Note that although b ranching rule 2 tends to produce a smaller number

4 of nodes than the mixed strategy described in section 5.3 , it also tends to

requi re about twice as much time than the latter. This is because the

di sjunction (39 ) (rule 1) creates nodes for which the A? solution at the

father node remains feasible , and for which a large number of variables can

be fixed at 0 -- two fea tures that make such nodes easy to fathom .

6. The S omietric Case

Our algori thm can of course be applied to sycinetric TSP’ s as it is , but

it would not be efficient for such problems in its presa~t form . This is

SO occause of the well known fact that AP’s associated with syimnetric TSP’s

tend to have optima l solutions involving a large number of subtours of length

two . However , our approach can easily be ad apted to the syninetric case by

replacing the assignment prob lem with the 2-matching problem as the basic

relaxation of the TSP. We are in the process of developing such an algorithm

for the sy~~tetric TSP.
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using a new, restricted Lagrangean relaxation based on the assignment
problem (A?). The Lagrange multipliers are constrained so as to guarantee
the continued optim .ality of the initial A? solution , thus eliminating the
need for repeatedly solving AP in the process of computing multipliers . We
give severa l polynomially bounded procedures for generating valid inequalities~

- 
- and taking them into the La g rangean function with a_positive_multiplier withou1 ~~~~~~~~~~

—-5.

DO ~~~~~~~ 1473 tOi~ ios O, I M0V UI$ Os$O~~L1t Unclassified (over)
‘ ‘ 1/r4 0 l Q 2 ~ 0I’ 440 1 sKcu4 ) ’?~ CI.. AU) I ICAYI ON OF 1341$ F44$ (44II~~II D 4 4 4  fR t lV~~~I

_ _  ~p3 ~~~~
~ i T ~~~i~ ~~~~~~~~~~~~~~~ ~~~~~ - - -~-~~~ -- -  -~~ • .~~~~~~~



_______________________ - 
- 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_______ - -----5- -

.~~...iWF Y CL~A$5I F~CAf3 ~~N 01 13415 4)60$4 W34.. O~~a 5441. S03

vi olating the constraints , so as to strengthen the current lower bound .
Upper bound s are generated by a fast heuristic whenever possible. When the

- 
bound-strengthening techniques are exhausted without  ma tching the upper
with the lower bound , we branch by using two different rules , according to
the situation: the usual subtour breaking disjunction , and a new disjunction I

based on conditional bounds. We discuss computationa l experience on 120
randomly generated asymmetric TSP’s with up to 325 cities , the maximum time -
used for any single problem being 82 seconds. Though the algorithm discussed
here is for the asymmetric TSP, the approach can be extended to the symmetric
TSP by using the 2-matching problem instead of AP.

1 
44 1

4

•
• I

I 
4

J 
I

4 4
t I

L
I

SLC1JMIT’V C ~ aI ’T CA ’0N ~ F ~3I4$ I&SU~~ .D~~• ~ 444II 44I

- —  - - - --,~~ ~-~~ .--~- 5- - — -  - -  _~ -5 —
--~~~~~~~~--- —- -~~--— ~~~~~~~~~~

. 
~~~~~~~ -- -


